A Non - Overlapping Ddm for Parabolic Problems
نویسندگان
چکیده
منابع مشابه
An Iterative Non-overlapping Domain Decomposition Method for Optimal Boundary Control Problems Governed by Parabolic Equations
In this paper, we consider a numerical method for solving optimal boundary control problems governed by parabolic equations. In order to avoid large amounts of calculation produced by traditional numerical methods, we establish an iterative non-overlapping domain decomposition method. The whole domain is divided into many non-overlapping subdomains, and the optimal boundary control problem is d...
متن کاملA MIXED PARABOLIC WITH A NON-LOCAL AND GLOBAL LINEAR CONDITIONS
Krein [1] mentioned that for each PD equation we have two extreme operators, one is the minimal in which solution and its derivatives on the boundary are zero, the other one is the maximal operator in which there is no prescribed boundary conditions. They claim it is not possible to have a related boundary value problem for an arbitrarily chosen operator in between. They have only considered lo...
متن کاملNon-overlapping Domain Decomposition Applied to Incompressible Flow Problems
A non-overlapping domain decomposition method with Robin-type transmission conditions which is known for scalar advection-diffusion-reaction problems [2],[5] is generalized to cover the Oseen equations. The presented method, which is later referred to as DDM, is an additive iteration-by-subdomains algorithm. Hence parallelism is given in a very natural way. The formulation is based on the conti...
متن کاملA Spatial Domain Decomposition Method for Parabolic Optimal Control Problems ?
We present a non-overlapping spatial domain decomposition method for the solution of linear–quadratic parabolic optimal control problems. The spatial domain is decomposed into non-overlapping subdomains. The original parabolic optimal control problem is decomposed into smaller problems posed on space-time cylinder subdomains with auxiliary state and adjoint variables imposed as Dirichlet bounda...
متن کاملA Two-Stage Multi-Splitting Method for Non-Overlapping Domain Decomposition for Parabolic Equations
In domain decomposition for parabolic partial differential equations (PDE) several approaches have been developed— breaking the domain into multiple subdomains of either overlapping or non-overlapping type, or using algebraic type splittings— cf. [CM94] for an overview. An important aspect is how to present the boundary conditions across interfaces or across common unknown points of subdomains,...
متن کامل